The Control of Tropical Convection¹

David J. Raymond

Physics Department and Geophysical Research Center New Mexico Tech Socorro, NM, USA

15 January 2014

1Work supported by the National Science Fo[un](#page-0-0)[dat](#page-1-0)[ion](#page-0-0) \longrightarrow

Thanks to Collaborators

- **>** Saška Gjorgjievska
- \blacktriangleright Sharon Sessions
- ► Carlos López Carrillo
- \blacktriangleright Mike Herman

Showers and Rains

- \triangleright Ramage (1971) divides tropical precipitation into two regimes:
	- \triangleright Showers: Fine weather with relatively dry conditions, high CAPE, low shear; isolated storms, low average rain.
	- \triangleright Rains: Cloudy weather with moist conditions, low CAPE, higher shear; widespread showers, high average rain.

KORKAR KERKER EL VOLO

- \triangleright Williams et al. (1992) make similar distinction and correlate higher lightning rates with the showers regime.
- \triangleright Is low CAPE and high moisture a cause or an effect of convection with higher average rainfall?

Thermodynamic Indices

Instability index $(s^*$ is saturated moist entropy):

$$
\Delta s^*=s^*_{1-3km}-s^*_{5-7km}
$$

Saturation fraction (column relative humidity):

$$
S = \frac{ precipitable\ water}{saturated\ precipitable\ water}
$$

Normalized Gross Moist Stability (NGMS)

$$
NGMS = \frac{\text{lateral entropy div}}{\text{lateral vapor conv}} = \frac{\text{(surf - top) ent flux}}{\text{rain - evap}} = \frac{\Delta F_{\text{ent}}}{R - E}
$$
\n
$$
R = E + \frac{\Delta F_{\text{ent}}}{NGMS}
$$
\n(A) ΔE (A) ΔE (B) ΔE (C) ΔE (D) ΔE (E) ΔE

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

(Noted by Neelin and Held, 1987.)

NGMS and the Mass Flux Profile

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Modeled Convection as a Function of S and Δs^* (Raymond and Sessions 2007)

Potential temperature and mixing ratio perturbations relative to undisturbed tropics (typical of easterly wave conditions):

Bi[g](#page-5-0)g[er](#page-6-0) $\delta\theta \Longrightarrow$ smaller Δs^* ; [big](#page-7-0)ger $\delta r \Longrightarrow$ bigger $\mathcal S$ $\mathcal S$ 2990

Mass Flux Profiles (Updated WTG, Mike Herman)

Surface wind: 7 m s $^{-1}$; RCE surface wind: 5 m s $^{-1}$

 $\mathbf{A} \equiv \mathbf{A} + \math$ 2990

Rainfall and NGMS

Rain as function of $\delta\theta$, δr , and ambient wind speed:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

In Situ Measurements

- ▶ TPARC/TCS08 (2008) project in western Pacific
- ▶ PREDICT/GRIP/IFEX (2010) project in western Atlantic and Caribbean

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Dropsonde Patterns

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Two Examples; Hagupit2 and Nuri2

4 ロト 4 伊 ト 4 ヨ ト

 2990

Þ

 \equiv

3-5 km absolute vorticity (ks⁻¹) and relative wind (20 m/s/deg)

Instability Index (Δs^*) for Hagupit2 and Nuri2

 299

È

Mean Nuri2 - Hagupit2 Temperatures

 4 (D) 4 6) 4 \pm) 4 \pm) 4 \pm) \equiv 299

Hagupit2 Circulation and Mass Flux

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Nuri2 Circulation and Mass Flux

K ロ X (御 X X を X X を X) 主 : 990

Mid-Level Vorticity/Circulation and Mass Flux

Is there a relationship between the two???

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q @

Thermodynamic Effect of Vortices

- \blacktriangleright Low-level vortex results in large instability index.
- \triangleright Mid-level vortex produces small instability index.

KORKA REPARATION ADD

Differences Quantified

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q @

Results from TCS08 and PREDICT (Saška Gjorgjievska)

See Singh, M. S., and P. A. O'Gorman, 2013: Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium. Geophys. Res. Letters, 40, 4398-4403.**K ロ ▶ 【 母 ▶ 【 ヨ ▶ 【** \equiv \rightarrow

 2990

Results from TCS08 and PREDICT (continued)

Þ $2Q$

Conclusions

- \triangleright The thermodynamic effect of strong mid-level vorticity is small instability index.
- \triangleright From modeling and theory, small instability index $\equiv \gt$ small NGMS and high saturation fraction. (See talk by Sharon Sessions, paper by Singh and O'Gorman.)
- \triangleright Convection has the strongest effect on the environment when the *NGMS* is small (intense rain, tropical cyclogenesis – see Saška Gjorgjievska's talk).
- \blacktriangleright ==> The mid-level vorticity distribution exerts a strong control over the character of tropical, oceanic convection.

4 D X 4 P X 3 X 4 B X 3 B X 9 Q O

 \triangleright Colin Ramage vindicated (after 40 years)!