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Showers and Rains

I Ramage (1971) divides tropical precipitation into two
regimes:

I Showers: Fine weather with relatively dry conditions,
high CAPE, low shear; isolated storms, low average rain.

I Rains: Cloudy weather with moist conditions, low CAPE,
higher shear; widespread showers, high average rain.

I Williams et al. (1992) make similar distinction and
correlate higher lightning rates with the showers regime.

I Is low CAPE and high moisture a cause or an effect of
convection with higher average rainfall?



Thermodynamic Indices

Instability index (s∗ is saturated moist entropy):

∆s∗ = s∗1−3km − s∗5−7km

Saturation fraction (column relative humidity):

S =
precipitable water

saturated precipitable water



Normalized Gross Moist Stability (NGMS)

NGMS =
lateral entropy div

lateral vapor conv
=

(surf − top) ent flux

rain − evap
=

∆Fent

R − E

=⇒

R = E +
∆Fent

NGMS

(Noted by Neelin and Held, 1987.)



NGMS and the Mass Flux Profile
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Modeled Convection as a Function of S and ∆s∗

(Raymond and Sessions 2007)
Potential temperature and mixing ratio perturbations relative
to undisturbed tropics (typical of easterly wave conditions):

2 1 0 1 2

θ perturbation (K)

0

5000

10000

15000

20000

h
e

ig
h

t 
(m

)

unperturbed

δθ = ± 0.5 K

δθ = ± 1.0 K

δθ = ± 2.0 K

A

0 0.5 1

moisture perturbation (g/kg)

unperturbed

δr = 0.25 g/kg

δr = 0.5 g/kg

δr = 1.0 g/kg

B

Bigger δθ =⇒ smaller ∆s∗; bigger δr =⇒ bigger S



Mass Flux Profiles (Updated WTG, Mike Herman)
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Rainfall and NGMS

Rain as function of δθ, δr , and ambient wind speed:
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In Situ Measurements

I TPARC/TCS08 (2008) project in western Pacific
I PREDICT/GRIP/IFEX (2010) project in western Atlantic

and Caribbean



Dropsonde Patterns
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Two Examples; Hagupit2 and Nuri2

138 139 140 141 142 143
lon (deg)

13

14

15

16

17

18

la
t 

(d
e
g
)

Nuri2

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

10 m/s

145 146 147 148 149 150
lon (deg)

14

15

16

17

18

19

la
t 

(d
e
g
)

Hagupit2

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

3 5 km absolute vorticity (ks−1 ) and relative wind (20 m/s/deg)



Instability Index (∆s∗) for Hagupit2 and Nuri2
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Mean Nuri2 - Hagupit2 Temperatures
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Hagupit2 Circulation and Mass Flux
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Nuri2 Circulation and Mass Flux
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Mid-Level Vorticity/Circulation and Mass Flux

Is there a relationship between the two???



Thermodynamic Effect of Vortices

Developing disturbanceWest Pacific wave

PV anomaly

warm
PV anomaly

warm
Reed and Recker (1971)

cool

I Low-level vortex results in large instability index.
I Mid-level vortex produces small instability index.



Differences Quantified

Nuri2 Hagupit2
Instability index 11 J/ K/ kg 27 J/ K/ kg

Saturation fraction 0.88 0.82
Normalized GMS −0.01 0.64

Mass flux bottom-heavy top-heavy
Vorticity maximum middle levels surface (weak)

Fate rapid devel delayed devel



Results from TCS08 and PREDICT (Saška
Gjorgjievska)
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See Singh, M. S., and P. A. O’Gorman, 2013: Influence of
entrainment on the thermal stratification in simulations of
radiative-convective equilibrium. Geophys. Res. Letters, 40,
4398-4403.



Results from TCS08 and PREDICT (continued)
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Conclusions

I The thermodynamic effect of strong mid-level vorticity is
small instability index.

I From modeling and theory, small instability index ==>
small NGMS and high saturation fraction. (See talk by
Sharon Sessions, paper by Singh and O’Gorman.)

I Convection has the strongest effect on the environment
when the NGMS is small (intense rain, tropical
cyclogenesis – see Saška Gjorgjievska’s talk).

I ==> The mid-level vorticity distribution exerts a strong
control over the character of tropical, oceanic convection.

I Colin Ramage vindicated (after 40 years)!


