

Exploring Key Processes in Modeling the Madden-Julian Oscillation (MJO)

A Joint YOTC / MJO Task Force and GEWEX GASS Global Model Evaluation Project

Component I: Climate Simulations

Xian-an Jiang^{1,2}

¹Joint Institute for Regional Earth System Sci. & Engineering / UCLA, USA ²Jet Propulsion Laboratory, California Institute of Technology, USA

Duane Waliser², Prince Xavier³, Jon Petch³, Nick Klingaman⁴, and Steve Woolnough⁴

³Met Office, Exeter, UK ; ⁴National Center for Atmospheric Sciences - Climate, Reading University, UK

Bin Guan^{1,2}, and Participating Modeling Groups

Acknowledgments:

NSF/Climate & Large-scale Dynamics

Vertical Structure and Diabatic Processes of the MJO: *Global Model Evaluation Project*

MJO Task Force/YOTC and GASS

http://yotc.ucar.edu/mjo/vertical-structure-and-diabatic-processes-mjo

	Model Experiment	Science Focus	Exp. POC				
١.	20 Yr Climatological Simulations (1991-2010 if AGCM) 6-hr, Global Output Vertical Structure, Physical Tendencies	Model MJO Fidelity Vertical structure Multi-scale Interactions: (e.g., TCs, Monsoon, ENSO)	UCLA/JPL X. Jiang D. Waliser				
11.	2-Day MJO Hindcasts YOTC MJO Cases E & F (winter 2009)* Time Step, Indo-Pacific Domain Output Very Detailed Physical/Model Processes	Heat and moisture budgets Model Physics Evaluation (e.g. Convection/Cloud/BL) Short range Degradation	Met Office P. Xavier J. Petch				
III.	20-Day MJO Hindcasts YOTC MJO Cases E & F (winter 2009)* 3-hr, Global Output Elements of I & II	MJO Forecast Skill State Evolution/Degradation Elements of I & II	NCAS/Walker in. N. Klingaman S. Woolnough				
*DYNAMO Case TBD Commitments: About 30 Modeling Groups with AGCM and/or CGCM							

National Centre for Atmospheric Science

Primary Goal of the Climate Simulation Component

Process-oriented "score"

Participating GCMs for Climate Simulation Component (Experiment I)

	Model	Horizontal Resolution	Vertical Resolution	Cumulus Scheme	Notes
1	01_NASAGMAO_GEOS5	0.625° lon x 0.5° lat	72	RAS (RAS; Moorthi & Suarez 1992)	
2	03a_SPCCSM (CAM3 + POP)	T42 (~2.8°)	30	Super-parameterization (Khairoutdinov & Randall 2003)	
3	03b_SPCAMP_AMIP	T42	30	(Khairoutdinov & Randall 2001)	1986-2003
4	04_GISS_ModelE2	2.75° lon x 2.2° lat	40	Kim et al. (2012), Del Geino et al. (2012)	
5	05_EC_GEM	~1.4 °	64	Kain and Fritsch 1990)	
6	07_MIROC	T85 (~1.5°)	40	Chikira scheme (Chikira and Sugiyama 2010)	AMIP SST 1986- 2005
7	10_MRI-GCM	T159	48	(Pan and Randall 1998)	
8	11_CWB_GFS	T119 (~1°)	40	(RAS; Moorthi & Suarez 1992)	
9	14_PNU_CFSv1	T62 (~2°)	64	(RAS; Moorthi & Suarez 1992)	
10	16_MPI_ECHAM6 (ECHAM6 + MPIOM)	T63 (~2º)	47	(Tiedtke 1989; Nordeng 1994)	
11	17_MetUM_GA3	1.875° lon x 1.25° lat	85	Gregory and Rowntree (1990)	
12	21_NCAR_CAM5	T42 (~ 2.8°)	30	(Zhang & McFarlane 1995)	
13	22_NRL_NAVGEMv.01	T359 (37km)	42	(Hong and Pan 1996; Han and Pan 2011)	
14	24_UCSD_CAM	T42 (~ 2.8°)	30	(Zhang & McFarlane 1995)	
15	27_NCEPCPC_CFSv2	T126 (~ 1º)	64	(Hong & Pan 1998)	
16	31a_CNRM_AM		31		
17	31b_CNRM_CM (CNRM_AM+ NEMO)	T127 (~1.4°)		Bougeault (1985)	
18	31c_CNRM_ACM				
19	34_CCCma_CanCM4	T63(?)	35(?)	(Zhang & McFarlane 1995)	
20	35_BCCAGCM2.1	T42 (~2.8 deg)	26	(Wu et al 2011)	
21	36_FGOALS2.0-s	R42 (2.8°lonx1.6°lat)	26	(Tiedtke 1989; Nordeng 1994)	
22	37_NCHU_ECHAM5-SIT	T62	21	(Tigdtko 1980: Nordong 1994)	
23	37b_NCHU_AGCM	105	51	(Heatke 1989, Nordelig 1994)	
24	39_TAMU_Modi-CAM4 (CCSM4)	2.5 ° lon x 1.9 ° lat	26	Zhang & McFarlane 1995)	Idealized tilted vertical heating
25	40_ACCESS (modified METUM)	1.875° lon x 1.25° lat	85	(Gregory and Rowntree 1990)	
26	43_ISUGCM	T42 (~ 2.8°)	18	(Zhang & McFarlane 1995)	
27	44_LLNL_CAM5ZMMicro	T42 (~ 2.8°)	30	(Zhang & McFarlane 1995)	
28	45_SMHI_ecearth3	T255(80km)	91	IFS cy36r4	

MJO Fidelity

Lag-regression of rainfall with Indian Ocean (70-90°E; 5°S-5°N) base point

20-100-day filtered

dash line – 5 m/s

MJO Skill Score by Rainfall Hovmöller Diagram (Indian Ocean & western Pacific averaged)

MJO Skill Score by Rainfall Hovmöller Diagram (Indian Ocean & western Pacific averaged)

• Top 25% models

• Bottom 25% models

Wavenumber-Frequency Spectra (Nov-Apr)

Symmetric

E/W Ratio: Wave number 1-3; 30-96-day

✓ Kelvin wave & MJO

MJO skill by Hovmöller Diagram vs E/W Ratio

Process-oriented metrics for MJO

- Large-scale rainfall partition
 Mean zonal wind over IO/W.Pac warm pool
- ✓ Vertical moisture profiles with rainfall rate
- ✓ Normalized gross moist stability (NGMS)
- \checkmark Radiative vs convective heating ratio

Metric I. Convective vs large-scale rainfall

1,25 1,5 1,75 2 -2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1

MJO Skill vs Large-scale Rainfall Fraction

Metric II. Mean zonal wind over IO & W. Pacific warm pool

Winter mean u-wind at 850hPa (Nov-Apr)

ERA-Interim

(60-150°E;5°S-5°N)

MJO Fidelity vs winter mean 850hPa u-wind over Indian/W. Pacific (60-150°E;5°S-5°N)

Metric III. Sensitivity to vertical Moisture Profile

Mass-weighted average of mid-to-lower tropospheric (850-500 hPa) RH for high rain rates (1, 5, and 10%)

(Courtesy of Daehyun Kim)

A correlation of ~0.62 between E/W ratio and RH for 5% rain events based on CMIP3/CMIP5 models.

Kim et al. (2013)

MJO fidelity vs 850-500hPa RH for top 5% Rain Rates

Metric IV. Normalized Gross Moist Stability (NGMS)

(Raymond et al. 2008; Benedict et al. 2013; Maloney et al. 2014)

 $\Gamma_{V} = -\frac{T_{R}\langle \omega(\partial s/\partial p) \rangle}{L\langle \nabla \cdot (rv) \rangle}$

- s moist entropy r - mixing ratio
- Efficiency of convection and associated circulation in discharging column moisture
- ✓ Weak positive or negative GMS is necessary to destabilize the MJO in an idealized "moisture mode" framework (Sobel & Maloney 2013).

Benedict et al. (2013)

(Courtesy of E. Maloney & J. Benedict)

MJO Fidelity vs Normalized Gross Moist Stability (NGMS)

Metric V. Radiative heating for the MJO instability

(Lee et al. 2001; Raymond 2001; Sobel and Gildor 2003; Lin et al 2007; Andersen and Kuang 2012; Jiang et al . 2012)

Enhancement Factor = $\frac{\langle Q_R \rangle}{\langle Q_1 \rangle}$

- ✓ "Radiative-convective instability" for the MJO could emerge when this factor exceeds 20% (Lee et al. 2001; Raymond 2001; Lin and Mapes 2004).
- ✓ Enhancement factor of 40% was derived based on TRMM estimate for the MJO peak phase over the Indian Ocean .
- ✓ A factor of 26% in Super-parameterized CAM (Andersen and Kuang, 2012).

Jiang et al. (2012)

MJO fidelity vs Radiative/Convective heating Ratio

Vertical Structure and MJO Fidelity

Vertical structures of the MJO (ERA-Interim; lag-0 regression)

Model Skill in Vertical Structure vs MJO Fidelity

Vertical MJO Structures in Strong and Weak MJO models

(10°S-10°N)

Ongoing analyses

- Comprehensive analyses of moist static energy budget (e.g., Maloney et al. 2009; Anderson and Kuang 2012)
- Cumulus Momentum Transport (CMT; e.g., Tung and Yanai, 2002; Majda and Stachman, 2012; Wang and Liu 2011)
- Ocean-atmosphere interactive processes (Fu et al. 2003)
- Horizontal structure of the MJO
- •

Summary

- About ¼ of total 28 GCMs are able to reasonably well capture the observed eastward propagating MJO signals;
- Factors including large-scale rainfall partition, rainfall PDF, vertical relative humidity profiles vs rain-rate, 850hPa uwind, and surface latent heat flux in a GCM, may not uniquely related to the model fidelity in simulating the MJO;
- Atmosphere-ocean coupling could significantly lead to improved simulation of the MJO;
- Differences in vertical structures of u-wind, T, q, Q, w, associated with the intraseasonal rainfall are noted in "strong" and "weak" GCMs.

Thank you!

For more details of the YOTC/GASS MJO multi-model Project:

http://yotc.ucar.edu/mjo/vertical-structure-and-diabatic-processes-mjo

Suggestions, comments, & collaborations:

Email: xianan@ucla.edu

MJO fidelity vs 850-500hPa RH for (T 5% - B 10%) Rain Rates

