Transforming Circumnavigating Kelvin Waves that Initiate and Dissipate the Madden Julian Oscillation

Patrick Haertel Yale University

3 m/s

Collaborators

Katherine Straub, Susquehanna University Andrew Budsock, Susquehanna University

Supported by the National Science Foundation

Outline

- 1. Lagrangian Atmospheric Model
- 2. Data and Methods
- 3. Observed and Simulated MJOs
- 4. Dynamics
- 5. Summary and Future Research

Lagrangian Atmospheric Model

Conforming Parcel Concept

height

distance

Lagrangian Convective Parameterization

height

distance

Lagrangian Convective Parameterization

height

distance

Sea Surface Temperature

Data and Methods

Atmospheric Sounding Stations

- 25 hPa resolution
- 7-70 day filter
- MJO relative coordinates

Determining MJO Paths

GPCP Rainfall (mm/day)

Model Rainfall (mm/day)

1-3

3-5

> 5

Composite Time Series

Observed and Simulated MJOs

Composite Zonal Wind

Developing Stage

Composite Zonal Wind

Mature Stage

Composite Zonal Wind

Dissipating Stage

Composite Temperature Perturbation

Developing Stage

Composite Temperature Perturbation

Mature Stage

Composite Temperature Perturbation

Dissipating Stage

Composite Moisture Perturbation

Developing Stage

Composite Moisture Perturbation

Composite Moisture Perturbation

Dissipating Stage

Composite Vertical Structure

Developing Stage

Composite Vertical Structure

Mature Stage

Composite Vertical Structure

Dissipating Stage

Developing Stage: T, rainfall, 200 hPa wind

Observed

____ 6 m/s

Mature Stage: T, rainfall, 200 hPa wind

Observed

Dissipating Stage: T, rainfall, 200 hPa wind

Observed

T, rainfall, 200 hPa wind

Dynamics

Inviscid Response to MJO-like Heat Source

T (contoured), Q (shaded), 200 hPa winds at 2 days

Inviscid Response to MJO-like Heat Source

T (contoured), Q (shaded), 200 hPa winds at 4 days

Inviscid Response to MJO-like Heat Source

T (contoured), Q (shaded), 200 hPa winds at 6 days

longitude

Observed MJO Structure vs. Inviscid Response to Heating

T contoured, Q/rainfall shaded, 200 hPa wind

Damped Response to MJO-like Heat Source

T (contoured), Q (shaded), 200 hPa winds at 5 days

Damped Response to MJO-like Heat Source

T (contoured), Q (shaded), 200 hPa winds at 15 days

Damped Response to MJO-like Heat Source

T (contoured), Q (shaded), 200 hPa winds at 25 days

Observed MJO Structure vs. Damped Response to Heating

T contoured, Q/rainfall shaded, 200 hPa wind

Moist Wave Response

Modified Thermodynamic Equation

 $\frac{\partial T}{\partial t} = (1 - \mu)S \ \omega + Q$

 μ : offset of adiabatic temperature change by convective heating

Moist Wave Response to 1 mm/day Forcing

T (contoured), Q (shaded), 200 hPa winds at 5 days

Moist Wave Response to 1 mm/day Forcing

T (contoured), Q (shaded), 200 hPa winds at 15 days

Moist Wave Response to 1 mm/day Forcing

T (contoured), Q (shaded), 200 hPa winds at 25 days

Observed MJO Structure vs. Moist Wave Response

T contoured, Q/rainfall shaded, 200 hPa wind

What's the forcing?

Meridional Moisture Transport

Mature Simulated MJO

*v_eq' at 15 N/*S

Offset Check: Simulated MJO

Effects of Variable Offset: Shallow Water Example

Origin of Initiating Kelvin Wave

Moist Wave Response to -1 mm/day Forcing

T (contoured), Q (shaded), 200 hPa winds at 5 days

Moist Wave Response to -1 mm/day Forcing

T (contoured), Q (shaded), 200 hPa winds at 15 days

Moist Wave Response to -1 mm/day Forcing

T (contoured), Q (shaded), 200 hPa winds at 25 days

Role of Kelvin Waves in Primary and Successive MJOs

Straub (2013): MJO OLR (shaded), u_200 - u_850 (contoured)

Primary

Summary

- MJO convection is initiated and dissipated by planetary scale Kelvin waves ullet
- Active and suppressed phases of the MJO excite the two phases of Kelvin waves lacksquare
- Over the warm pool, convective heating mostly offsets adiabatic cooling due to vertical lacksquaremotion, but the offset is much weaker elsewhere

Possible Future Research

Spontaneous TC formation at 1^o resolution

