

Tropical wave modes modified by semi-empirical parameterizations of moisture

Lei Zhou *Second Institute of Oceanography, Hangzhou, China* **In-sik Kang** *Seoul National University, Seoul, South Korea* **Bin Wang** *University of Hawaii*

Honolulu, Hawaii, Jan 14, 2014

"Separation" between MJO and classical waves

Kiladis et al. 2009

Modified dynamic modes

- Moisture processes are considered in the dynamic equations convergence in the planetary boundary layer; surface heat flux; convectively coupled Kelvin-Rossby wave; multi-scale interaction; ocean-atmosphere interaction;
- Take Kang et al. (2013) as an example

$$
\frac{\partial u}{\partial t} - \beta y v + \frac{\partial \phi}{\partial x} = -\kappa \nabla^2 u; \qquad \beta y u + \frac{\partial \phi}{\partial y} = 0
$$

$$
\frac{\partial \phi}{\partial t} + C_0^2 \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = \mathbf{Q} - N\phi
$$

The heating term Related to moisture processes

Moisture mode

• The modes determined by the moisture tendency

■ Take Sobel and Maloney (2012) for an example

 dW dt = ∂W $\frac{\partial u}{\partial t} + u$ ∂W ∂t $= -\widetilde{M}P + E - (1 - \widetilde{M})R + k_W$ $\partial^2 W$ ∂x^2 $\hat{u}(x,t) = \int G(x|x') [P(x',t) - R(x',t)] dx'$ Time tendency of moisture

Motivation

 Tropical wave modes under the influence of dynamical processes and the moisture processes;

 The momentum tendency and the moisture tendency are both considered in a uniform theoretical framework;

Shallow-water system

$$
\frac{\partial \vec{u}}{\partial t} + \beta y \vec{k} \times \vec{u} = -\nabla \phi,
$$

$$
\frac{\tilde{\partial}\Phi}{\tilde{\partial}t} + c^2 \nabla \cdot \vec{u} = Q,
$$

$$
\frac{\partial W}{\partial t} + u \frac{\partial \overline{W}}{\partial x} + v \frac{\partial \overline{W}}{\partial y} - MV \cdot \overrightarrow{u} = m_b + E - P,
$$

 \vec{u} is the horizontal velocity, ϕ is the geopotential, c is the gravity wave speed, M is the moisture stability. E denotes evaporation, P denotes precipitation $W=\int \frac{q}{q}$ \overline{g} $Q=Q(P)$.

 m_b is the moisture source due to Ekman pumping.

Parameterization for evaporation

The traditional bulk formula

$$
E = \rho_0 C_d |\overline{U} + u|(q_s - q_a)
$$

Assuming a dominant mean westerly wind (positive \overline{U}) in the background, for ex., from the tropical Indian Ocean to the western Pacific Ocean, \overline{U} is positive and overwhelms u. Thus, $|\overline{U} + u| = \overline{U} + u$, regardless of the direction of u.

$$
E = bu,
$$

$$
b = \rho_0 C_d (q_s - q_a)
$$

Parameterization for precipitation

• convective precipitation due to the moisture transfer from the PBL

$$
-\mu\cdot\overrightarrow{\textrm{Vu}}_b\cdot\overrightarrow{W}
$$

 large-scale precipitation proportional to the water vapor content in the air column

 d_3W

P precipitation due to convectively available potential energy

Parameterization for precipitation

 $P = -\mu \nabla \vec{u}_b \cdot \overline{W} + d_3 W + d_4 \phi,$

According to Wang and Li (1994)

$$
\nabla.\vec{u}_b = -\frac{(\nabla^2 \phi + \beta u + \beta \delta v)}{\epsilon (1 + \delta^2)},
$$

Finally, $P = -d_1 u - d_2 v + d_3 W + d_4 \phi$,

P is related to all state variables.

$$
d_1 = \frac{(1-\mu)\overline{W}\beta}{\epsilon(1+\delta^2)}
$$
 and
$$
d_2 = \frac{(1-\mu)\overline{W}\beta\delta}{\epsilon(1+\delta^2)}
$$
.

Parameterized shallow-water system

$$
\frac{\partial u}{\partial t} - \beta yv = -\frac{\partial \phi}{\partial x},
$$

$$
\frac{\partial v}{\partial t} + \beta yu = -\frac{\partial \phi}{\partial y},
$$

$$
\frac{\partial \phi}{\partial t} + c^2 \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = -\delta_1 u - \delta_2 v + \delta_3 W + \delta_4 \phi,
$$

$$
\frac{\partial W}{\partial t} + u \frac{\partial \overline{W}}{\partial x} - MV \cdot \overline{u}(x, y, t) = (b + d_1)u + d_2 v - d_3 W - d_4 \phi,
$$

where
$$
\delta_i = \frac{\mu}{\mu - 1} \gamma L d_i
$$
, $i = 1, 2$ and $\delta_i = \gamma L d_i$, $i = 3, 4$.

Eigen-value problem 1 + 2 ² + 1 3 + 3b 2 + 2 [−] ¹ ⁺ ² − 4 3 ² + 2 = Λ, Λ = − 1 + ² − ² + + 1 3 − ² + ³ − 2 − 1 + 4 2 3 .

 $\Lambda = \Lambda_d + \Lambda_m$,

$$
\Lambda_{\rm d} = -(1+i)\left(\omega^2 - k^2 + \frac{k}{\omega}\right),\,
$$

$$
\Lambda_{\rm m} = \left[\gamma L \left(\frac{\delta_1 \omega}{\delta_3 c} - \frac{Mk}{c^2} \right) + i \frac{\delta_3 (b - \overline{W}_x)}{\omega \beta c^2} \right] \left(k - \frac{1}{\omega} \right) + \gamma L \frac{\delta_4 \omega^2}{\delta_3}.
$$

Parameters

Importance of moisture processes

$$
\Lambda = \Lambda_{\rm d} + \Lambda_{\rm m},
$$

The ratio of $|\Lambda_m| \setminus |\Lambda_d|$

When the ratio is large, moisture processes dominate

Dispersion relation

Black lines: classical dynamical waves; Blue lines: the first mode; Red lines: The second mode; Green lines: the third mode.

The MJO domain

Black lines: classical dynamical waves Blue lines: the first mode; Red lines: The second mode; Green lines: the third mode

Plan-view of the coupled mode

Colors $\sim \varphi$ Black contours ~ W Purple contours ~ precipitation vectors $\sim \vec{u}$

Solid contours stand for positive anomalies

Dashed contours stand for negative anomalies

All variables are normalized with their own maximum

Parameter sensitivity

(a) The 1st coupled mode Frequency Wavenumber

A parameter is perturbed by $\pm 50\%$ (from -50% to 50% with an interval of 10%) off their base values listed in the previous table.

Black curves $\sim d_1$, δ 1 Blue curves $\sim d_2$, δ_2 Red curves $\sim d_3$, δ_3 Green curves $\sim d_4$, δ_4 .

Influence of different parameter

Black lines show the dispersion relation with all parameters.

Blue lines: d_1 and δ_1 are zero Red lines: d_2 and δ_2 are zero Purple lines: d_3 and δ_3 are zero Green lines: d_4 and δ_4 are zero

Conclusions

- With an ideal and linearized shallow water system, the effect of moisture on tropical wave modes is analytically studied;
- \blacktriangleright The moisture tendency and the momentum tendency are both explicitly considered;
- The coupled dynamic-moisture mode is consistent with the observed MJO in both the spectral and physical domains;
- Rew modes related to moisture processes occur when the moisture tendency is considered.

Thanks!