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Background: Organized tropical rainfall in idealized
high-resolution models

e constant SST, no land, no Coriolis force (no rotation), periodic lateral
boundaries

e initially scattered rainfall becomes aggregated into one region

* linked to feedbacks between convective rainfall, tropospheric water
vapor, radiation, and surface fluxes
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hypothesised idealised self-aggregation mechanisms:

» low-level circulation forced by cooling at the top of the boundary layer in drier regions
leads to moistening of moist, convective regions and drying of drier regions (vertical
gradient of moisture/cloud at low levels is more negative in those regions)

» evaporation-wind interaction, stronger surface fluxes around moist, convective
regions with strong low-level inflow leading to further moistening

 other moisture-convection feedbacks

homogen. radiation interactive radiation
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Background: Organized tropical rainfall in idealised
high-resolution models
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Background: Organized tropical rainfall in idealised

high-resolution models

UK Met Office Unified Model UK Met Office Unified Model
Day 2 mean Day 40 mean

surf. . surf.
~" wind vectors ¢ 10 2 (F0wmeg 30000 daymeen Oy 40 009 2=+ wind vectors

idealised model setup: 4 km, 3D-Smagorinsky mixing, explicit convection, Priestly
moisture conservation, 3 prognostic microphysical fields
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Mean state dries (because of environment outside
convection), mean OLR goes up with agg.
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Aggregation is slowed or reversed by non-interactive
radiation

Control starting from Const. radiation starting Const. radiation starting
homogeneous state from homogeneous state from aggregated state
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idealised models 4km (starting with no radiation)
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Aggregation is slowed a bit by non-interactive surface

Control starting from
homogeneous state
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Aggregation is slowed or reversed by combined non-
interactive radiation and surface fluxes

Const. radiation and Const. radiation and
Control starting from surf. flux. starting from surf. flux. starting from
homogeneous state homogeneous state aggregated state
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idealised models 4km (no rad and c. S.F. after agg. state)
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cold pools slow aggregation

Jeevanjee and Romps 2013 argue that cold pools slow down aggregation by
spreading low-level moisture from convective areas to the drier environment. We
also see slower aggregation when we prevent cold pools by turning off the
evaporation of rain in the UM.

Control starting from
homogeneous state
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Current and Future Work

Can we find links between convective self-
aggregation in idealized models and
organized tropical convection in
observations or more realistic simulations?
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Aggregation in Observations

Tobin et al. 2012, Tobin et al. 2013 look at aggregation state in snapshots
of tropical observations.

they define a “Simple Convective . 29 september 1997 6:00UTC B
Aggregation Index” (SCAI) based on N = 3 R\ Vi |
clusters with IR brightness temperature "

below 240 K : (LA TR P » N
IS % S T "o

N DO o I .‘,,'.
SCAI = X 1000 =ND_, X 1000. -p
SCAI Nmax L 0 ‘ ~a

where N is the number of clusters and Do is
the average geometric distance between
clusters (with some constants used for
normalisation). They found that N itself
correlates extremely well with SCAI, and so
they mostly use the smallness of N as a
proxy for aggregation.

Low SCAI (or N) means more aggregated.
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Aggregation in Observations

Tobin et al. 2012 show that aggregation of convection in observations over
10°x10° boxes leads to some of the same things as in idealised models
(when holding large-scale forcing roughly constant).
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observed “aggregation” cases during YOTC (May 2008- April 2010)

10°x10° box centered on equator, Indian or W. Pac.
SST =26°C (299 K)

convec. area = 0.01

precip. =3 mm/day

e SCAI<0.5

minimum length for above criteria true = 5 days (but gaps of up to 12
hours are permitted)

in these 2 years, 166 cases (10°N — 10°S), 16 cases on equator, 5 in
central/eastern Indian or W. Pacific (I will investigate these 5).
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first observed “aggregation” case: 25 (30) Jan to 10 (5) Feb 2009
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first observed “aggregation” case: 25 (30) Jan to 10 (5) Feb 2009

limited-area model setup for observed case studies:

4 km grid spacing

e 3D-Smagorinsky mixing

e explicit convection

e “qtidy” moisture conservation

e 3 prognostic microphysical fields
e constant SST from initial analysis

e lateral boundaries taken from 12 km LAM just outside 4 km model, which is in
turn forced from ECMWF YOTC analyses
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first observed “aggregation” case: after 1 day
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first observed “aggregation” case: after 7 days
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first observed “aggregation” case: after 14 days
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4 km (70:80E-5:5N 20090125 ) daymean
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first observed
“aggregation”
case: hourly CWV
and precip
contour
(20 mm/day)
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Conclusions

 The idealised UM in radiative-convective equilibrium reproduces many of the findings
of previous work: interactive radiation is crucial for idealised self-aggregation of
convection, and interactive surface fluxes also play a role.

* Observations show that, after controlling for large-scale conditions, a more aggregated

state has a less humid, less cloudy environment and mean state, similar to idealised
models.

 The UM allows the exploration of both idealised and realistic cases of organised
convection using the same model. Preliminary results show some possible connections

between the organization of convection and the CWV field and interactive radiation in
the realistic cases.
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