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Mean meridional circulations

Traditional deep meridional Hadley circulation

Recently documented shallow meridional circulation

- Goal: Devise an idealized model that improves understanding of dynamics 
of deep and shallow circulations.

- One set of equations for both Hadley circulations (HCs) that helps describe 
asymmetries between winter and summer cells.

Adapted from Zhang et al. (2004).
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Governing equations

Zonal momentum equ.

Meridional momentum equ.

Hydrostatic balance

Continuity equ.

Thermodynamic equ.

- Zonally symmetric motions linearized about a resting basic state on the 
equatorial β-plane.

- Log-pressure height coordinate,                     , of only the inviscid interior.0  z  zT
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Streamfunction PDE
- Solve for the streamfunction,    .

- 2nd order hyperbolic PDE with prescribed diabatic heating.

- Shaping parameters are: static stability and inertial stability.

with the four boundary conditions (including prescribed Ekman pumping):
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Diagnostic equation
- Solve for the streamfunction,    .

- Hyperbolic      Elliptic PDE with prescribed diabatic heating.

- Shaping parameters are: static stability and inertial stability.

with the four boundary conditions (including prescribed Ekman pumping):
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Vertical transform
- Step 1: Eliminate the    derivatives by 
performing a vertical transform.

- Similar to a Fourier transform pair, except the domain is not periodic.

- Multiply elliptic equation by the eigenfunctions and integrate in   .

- Sum over all vertical wavenumbers,    , multiplied by transform coefficients
         and eigenfunctions.                            

z

z

m
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Sturm-Liouville Eigenproblem
- The eigenfunctions and associated eigenvalues arise from separating 
meridional and vertical structure from the elliptic equation for     and BCs. 

L{Zm(z)} = � N2

ghm
Zm(z)

Eigenvalues

 ̂
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Meridional equations

with the two boundary conditions:

- Step 2: Eliminate the y derivatives by using Green’s functions.

- Set of meridional equations where the inertial stability is the only 
shaping parameter.
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Green’s functions
- What are Green’s functions and why use them?

- We can construct same equations for                   as those for the 
streamfunction, with same boundary conditions.

       with BCs:

- Green’s functions require that RHS be a 
Dirac delta function.

- This is convenient for forcings that are 
“top-hat” functions in   .y

L[G(x, s)] = ��(x� s)

Gm(y, y0)
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750, km1500

-                  are parabolic cylinder 
functions.

- They contain all the information 
about meridional asymmetries via 
inertial stability.

- Think about the kinks,   , as the 
edges of the ITCZ.

D�1/2(x)

y0 = ± 0,

y0
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Final solution

- Forcing #1: Diabatic heating (            only).

- Forcing #2: Ekman pumping at the top of the boundary layer (         ).

- After combining Green’s function equations with equations for       , 
integrate in   .

- The final solution is a sum over all vertical wavenumbers.                      

y

m = 1

z = 0

 ̂m
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Forcing #1 - Deep HC 
- Deep diabatic heating forcing

- Black contours: streamfunction in 
units of m2/s.

- Red shading: diabatic heating in K/
day.

- As ITCZ moves poleward, 
asymmetry between winter and 
summer cells increases in a), b), c).

- Max asymmetry > 2:1 ~1200 km.

- Winter cell crosses the equator 
where inertial stability is smallest, 
less resistance to meridional motion.
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Forcing #1 -     Asymmetry
Winter

Summer

- Percentage of total mass flux 
for winter and summer HCs.

- As the ITCZ widens, the 
asymmetry between the winter 
and summer HCs increases 
and the latitude of max 
asymmetry moves poleward.

- As the vertical wavenumber 
increases, the asymmetry 
between the winter and 
summer HCs increases and the 
latitude of max asymmetry 
moves equatorward.
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Forcing #1 - Trajectories
- Three day parcel trajectories 
show the winter HC experiences 
less resistance to horizontal 
motion.

- Approximate time it takes for 
parcels to complete one revolution 
in the winter cell ~1-2 months.

- Note: Zonal velocities are 
significantly larger than meridional 
velocities.
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Forcing #2 - Shallow HC 
- Ekman pumping forcing only

- Contours: streamfunction, in units 
of m2/s.

- Note: Vertical domain is 
smaller,                         .

- As ITCZ moves poleward, 
asymmetry between winter and 
summer cells increases in a)-d). Max 
asymmetry ~ 2:1.

- Winter cell crosses the equator 
where inertial stability is smallest, 
less resistance to meridional motion.

0  z  3 km
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Forcing #2 -     Asymmetry
Winter

Summer
- Percentage of total mass flux for 
winter and summer HCs for an 
infinitesimally thin ITCZ.

- Maximum asymmetry occurs when 
ITCZ centered ~2800 km.

- Solution of mass flux is dominated 
by the external mode,            .m = 0
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Forcing #2 - Trajectories, w
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Transient Deep HC
- Retain the              terms, solutions now contain inertia-gravity waves.

- Step 1: Perform vertical transform (same transform as before).

- Step 2: Perform meridional Hermite transform of the resulting meridional 
structure equation to obtain a set of second order ODEs in time.

@2/@t2

 ̂ = 0 and @ 
@t = 0 at t = 0

Hm
n (y)

Initial Conditions:
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Transient Deep HC
- Retain the              terms, solution now includes inertia-gravity waves.

- Step 1: Perform vertical transform (same transform as before).

- Step 2: Perform meridional Hermite transform of the resulting meridional 
structure equation to obtain a set of second order ODEs in time.

@2/@t2

 ̂ = 0 and @ 
@t = 0 at t = 0

Hm
n (y)

Initial Conditions:
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F #1 - Transient Asymmetry
ITCZ between 
500-1000 km

Slow diabatic switch 
on (                      )

~50-60 h inertia-
gravity wave 
oscillations 

Similar 2:1 
asymmetry to 

balanced solutions 
over time

� =(24 h)�1
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ITCZ between 
500-1000 km

Fast diabatic switch 
on (                    )

~40-60 h inertia-
gravity wave 
oscillations 
(irregular) 

Up to ~9:1 
asymmetry

� =(6 h)�1

F #1 - Transient Asymmetry
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Concluding remarks
• An idealized zonally symmetric model on the equatorial β-plane was 

used to investigate deep and shallow circulations in the tropics.

• Prescribed ITCZ forcings: m = 1 diabatic heating and Ekman pumping 
at the top of the boundary layer.

• Step 1: Vertical transform by utilizing eigenfunctions and eigenvalues 
to remove z derivatives.

• Step 2: Use Green’s functions or meridional transform (Hermite 
functions) to remove y derivatives.

• The balanced model illustrates there is a deep Hadley circulation when 
diabatic heating is present, and there is a shallow Hadley circulation in 
the absence of diabatic heating due to Ekman pumping.

• Analytical formulas are derived of the asymmetry between the winter 
and summer cells as a function of ITCZ location, width, and vertical 
wavenumber (due to inertial stability).
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• This work has shown that Ekman pumping is a viable forcing 
mechanism for the shallow Hadley circulation.

• However, diabatic heating due to shallow precipitating convection and 
surface heating (e.g., land/sea breezes due to SST gradients, discussed 
in Nolan et al. 2007, 2010) are also viable forcing mechanisms.

• In fact, one could use a value for vertical velocity at the top of the 
boundary layer in our model due to other processes such as SST 
gradients and obtain similar results.

• Transient switch-on diabatic heating solutions illustrate equatorially-
trapped inertia-gravity waves ring between the ITCZ and a critical 
latitude on a timescale of 40-60 h.

• Are there observations of ringing in the Hadley cells (e.g., v winds)? 
Also, if diabatic heating has contributions from higher vertical 
wavenumbers, timescale of ringing will be different than 40-50 h.

Concluding remarks
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Lower boundary condition
D�

Dt
=

@�

@t
+ gw = gW
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Eigenvalues,
- The eigenvalues are also equivalent depths      , and can be expressed as 
internal gravity wave speeds            ,     Rossby lengths      , and Lamb’s 
parameters      .

- One external mode            ,  and many internal modes                           . 

- Diabatic heating uses only first internal mode.

- Ekman pumping uses the external mode and O(100) of internal modes.

hm

hm
(ghm)1/2 bm

✏m

m = 0 m = 1, 2, . . .1
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Parabolic Cylinder Functions
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F #1 -     ,     fieldswTt
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F #1 -     ,    fieldsut v
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F #2 - Boundary Layer Equ.

ug(y2) = �3 m/s

ug(y1) = 3 m/s

Wave = 4 mm/s
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F #2 -    fieldv
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