Dynamical aspects of deep and
shallow Hadley circulations
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Mean meridional circulations

- Goal: Devise an 1dealized model that improves understanding of dynamics
of deep and shallow circulations.

- One set of equations for both Hadley circulations (HCs) that helps describe
asymmetries between winter and summer cells.

Traditional deep meridional Hadley circulation
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Adapted from Zhang et al. (2004).
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Governing equations

- Zonally symmetric motions linearized about a resting basic state on the
equatorial f-plane.

- Log-pressure height coordinate, 0 < z < z7, of only the inviscid interior.

Z.onal momentum equ.

Meridional momentum equ.

Hydrostatic balance

Continuity equ.

Thermodynamic equ.
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Streamfunction PDE

- 2nd order hyperbolic PDE with prescribed diabatic heating.

- Shaping parameters are: static stability and mertial stability.

v — 0 as y — +o00,

v =0 at z = 2z,
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Diagnostic equation

- Hyperbolic = Elliptic PDE with prescribed diabatic heating.

- Shaping parameters are: static stability and mertial stability.

v — 0 as y — +o00,

v =0 at z = 2z,
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Vertical transform

- Step 1: Eliminate the z derivatives by
performing a vertical transform.

- Multiply elliptic equation by the eigenfunctions and integrate in z.

- Sum over all vertical wavenumbers, m, multiplied by transform coefficients
and eigenfunctions.
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Sturm-Liouville Eigenproblem

- The eigenfunctions and associated eigenvalues arise from separating
meridional and vertical structure from the elliptic equation for ¥ and BCs.
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Meridional equations

- Step 2: Eliminate the y derivatives by using Green’s functions.

- Set of meridional equations where the nertial stability 1s the only
shaping parameter.
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Green’s functions

- What are Green’s functions and why use them? |L|G(z,s)] = —d(z — s)

- We can construct same equations for G,,(y,y") as those for the
streamfunction, with same boundary conditions.

with BCs:

- Green’s functions require that RHS be a
Dirac delta function.

- This 1s convenient for forcings that are
“top-hat” functions 1n y.
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(D_l/g(y,/bfm)D—l/Q(_y/b’m)
if —co<y<y

D_15(=y' /bm)D_12(y/bm)

\

if v <y < oo0.

-D_4 /2(x) are parabolic cylinder

functions.

- They contain all the information
about meridional asymmetries via

inertial stability.

- Think about the kinks, v/, as the

edges of the ITCZ.

y/ — 0, 750, 1500 km
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Final solution

- After combining Green’s function equations with equations for ¥m,
Integrate 1n .

- The final solution 1s a sum over all vertical wavenumbers.

- Forcing #1: Diabatic heating (rmm = 1 only).

"—\Forcing #2: Ekman pumping at the top of the boundary layer (z = 0).
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Forcing #1 -

- Deep diabatic heating forcing

- Black contours: streamfunction 1n
units of m?/s.

- Red shading: diabatic heating in K/
day.

- As ITCZ moves poleward,
asymmetry between winter and
summer cells increases 1n a), b), ¢).

- Max asymmetry > 2:1 ~1200 km.

- Winter cell crosses the equator
where 1nertial stability 1s smallest,
less resistance to meridional motion.

CMMA
oy

Deep HC
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Forcing #1 - ¥ Asymmetry
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asymmetry moves poleward. 10

IIIIIII

20

- As the vertical wavenumber
increases, the asymmetry 80
between the winter and

summer HCs increases and the
latitude of max asymmetry
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Forcing #1 - Trajectories
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Forcing #2 - Shallow HC

- Ekman pumping forcing only

- Contours: streamfunction, 1in units
of m?/s.

- Note: Vertical domain 1s
smaller, 0 < z < 3 km.

- As ITCZ moves poleward,
asymmetry between winter and
summer cells increases 1n a)-d). Max
asymmetry ~ 2:1.

- Winter cell crosses the equator
where nertial stability 1s smallest,
less resistance to meridional motion.
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Forcing #2 - ¥ Asymmetry
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orcing #2 - Trajectories, w
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Transient Deep HC

- Retain the 0°/0t* terms, solutions now contain inertia-gravity waves.

2 i ez/H@ __9
Oz \ 0z cp o] O

- Step 1: Perform vertical transform (same transform as before).

- Step 2: Perform meridional Hermite transform of the resulting meridional
structure equation to obtain a set of segond order ODESs 1n time.
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Transient Deep HC

- Retain the 0°/0t* terms, solution now includes inertia-gravity waves.

0z

cplo) ¢

- Step 1: Perform vertical transform (same transform as before).

- Step 2: Perform meridional Hermite transform of the resulting meridional

structure equation to obtain a set of segond order ODESs 1n time.

[

: T =1 — (L4 At)e
900 2000 o |.20|oo 4000 ‘M.wul.' NEERE FEEETI ERR N R

42 48
” cMmaA ‘
”&M %

Wednesday, January 15, 14



F #1 - Transient Asymmetry
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F #1 - Transient Asymmetry
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Concluding remarks

® An idealized zonally symmetric model on the equatorial f-plane was
used to ivestigate deep and shallow circulations in the tropics.

® Prescribed ITCZ forcings: m = 1 diabatic heating and Ekman pumping
at the top of the boundary layer.

® Step 1: Vertical transform by utilizing eigenfunctions and eigenvalues
to remove z derivatives.

® Step 2: Use Green’s functions or meridional transform (Hermite
functions) to remove y derivatives.

® The balanced model 1llustrates there 1s a deep Hadley circulation when
diabatic heating is present, and there is a shallow Hadley circulation in
the absence of diabatic heating due to Ekman pumping.

® Analytical formulas are derived of the asymmetry between the winter
and summer cells as a function of ITCZ location, width, and vertical
wey wavenumber (due to inertial stability).
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Concluding remarks

® This work has shown that Ekman pumping is a viable forcing
mechanism for the shallow Hadley circulation.

® However, diabatic heating due to shallow precipitating convection and
surface heating (e.g., land/sea breezes due to SST gradients, discussed
in Nolan et al. 2007, 2010) are also viable forcing mechanisms.

® In fact, one could use a value for vertical velocity at the top of the
boundary layer in our model due to other processes such as SST
gradients and obtain similar results.

® Transient switch-on diabatic heating solutions illustrate equatorially-
trapped 1nertia-gravity waves ring between the ITCZ and a critical
latitude on a timescale of 40-60 h.

® Are there observations of ringing in the Hadley cells (e.g., v winds)?
Also, 1f diabatic heating has contributions from higher vertical

m wavenumbers, timescale of ringing will be different than 40-50 h.
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JAN 2000—2009 Mean QuikSCAT Winds
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Lower boundary condition

D¢  0¢ B
Dy aJrgw—gW at z = 0.

0 (00N (P 22,
5(8)+ (&ri)emo

0z ot CpTo
—z/H _a_w —z/H = a_w
=3, and e =By
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Eigenvalues, h,,

- The eigenvalues are also equlvalent depths h., and can be expressed as
internal gravity wave speeds (ghm), L/2 Rossby lengths b,,,, and Lamb’s
parameters €.

- One external mode m = 0, and many internal modes m = 1,2, ... occ.

P () | (gham)™ " (ms™") | b (km) | em

7099 263.8 (—) 2400 | 12.41
220.8 | 47.46 (48.27) 1018 | 383.4
61.42 | 24.53 (24.65) | 732.0 | 1434

M= SE

- Diabatic heating uses only first internal mode.

- Ekman pumping uses the external mode and O(100) of internal modes.
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Parabolic Cylinder Functions

d*D, 1 1 5
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F #2 - Boundary Layer Equ.
Do _ sy, = b,

702% - Byub — —k"Ub + Byug

—hE% = w(y,0,t) —w(y, —hg.t) = W(y,t).
Yy
00
By Ug — —@
3%y
Ub(y t) — (k2+22y2> ug(2 ZL) ug(yl)zgm/s
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