Why does ocean coupling improve the MJO?

Charlotte A. DeMott¹, Cristiana Stan², David A. Randall¹, and Mark D. Branson¹

¹Department of Atmospheric Science, Colorado State University ²Department of Atmospheric, Oceanic and Earth Sciences, George Mason University

how can we understand the role of air-sea interaction on the simulation of the ISO?

how can we understand the role of air-sea interaction on the simulation of the ISO?

how can we understand the role of air-sea interaction on the simulation of the ISO?

model physics differences cloud the issue

experimental design

experimental design

rainfall and SST anomaly lag-correlation (all seasons)

the atmosphere senses SST anomalies via surface fluxes.

$$lh \sim \Delta q^* |V|$$

the atmosphere senses SST anomalies via surface fluxes.

I. surface flux sensitivity

local vs remote control of surface fluxes

ERAI DJF

SH ratio difference: $|V|' - (\Delta T')$

local vs remote control of surface fluxes

1.0 0.8 0.6

0.4 0.2 0.0 -0.2 -0.4

-0.6 -0.8 -1.0

ERAI DJF

SH ratio difference: $|V|' - (\Delta T')$

 how sensitive are local and remote effects to SST?

wind dominates

 $\Delta T,q$ dominates

• for observations and models?

we will focus on the average over the **Indian Ocean**

"box" diagrams

- "local" or "direct" SST control accounts for <30% of local dynamic range (<10% of total variance).
- latent heat flux variance is primarily driven by wind speed variance, which is a "remote" or "indirect" effect of coupling.

2. moisture budget

vertically integrated moisture budgets

dq/dt = (vert. adv. - precip.) + horiz. adv. + lhflx+ res.

- mid-level moistening determines propagation direction.
- horizontal advection by convectively-driven wind anomalies dominates moisture advection.
- local air-sea interaction during IO developing phase produces more robust convection capable of downstream moistening.
- model physics strongly influences the "processing" of surface fluxes.

conclusions

- I. **local** effects in Indian Ocean can "intensify" ISO convection, enhancing **remote** effects over MC.
- 2. air-sea coupling can lead to more robust convection, which drives stronger downstream advective moistening.
- details of model physics may strongly influence points
 2 and 3.

extra slides

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

ERAI DJF

g) ratio difference: $|V|' - (\Delta q')$

ERAI DJF

plan view of equatorial convection

regional and seasonal local SST sensitivity

DJF

regional and seasonal local SST sensitivity

DJF

- shflx is more sensitive to SST than lhflx.
- greater sensitivity to SST in IO than WPac.
- SST sensitivity is greatest in DJF.
- IMPORTANT: these results are for 10N-10S only!

